Sains Malaysiana 52(8)(2023): 2209-2224

http://doi.org/10.17576/jsm-2023-5208-04

 

Copper Nanoparticles Coating on FTO with Improved Adhesion using Direct and Pulse Electrodeposition Techniques from a Simple Copper Sulphate Solution

(Salutan Nanozarah Kuprum pada FTO dengan Lekatan yang Diperbaiki menggunakan Teknik Elektrodeposisi Terus dan Nadi daripada Larutan Kuprum Sulfat Ringkas)

 

NUR AZLINA ADRIS1, LORNA JEFFERY MINGGU1,*, KHUZAIMAH ARIFIN1,2, ROZAN MOHAMAD YUNUS1, MOHAMAD AZUWA MOHAMED1,3, MASLIANA MUSLIMIN4 & MOHAMMAD B. KASSIM1,3

 

1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Building 224, KST BJ Habibie, South Tangerang 15314, Banten, Indonesia

3Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

4Hydrogen Technology Unit, Materials Technology Group, Industrial Technology Division, Malaysian Nuclear Agency, 43000 Kajang, Selangor, Malaysia

 

Received: 10 April 2023/Accepted: 14 July 2023

 

Abstract

Copper (Cu) metal nanoparticles were deposited onto FTO glass using the electrodeposition method. The precursor used was CuSO4×5H2O with Na2SO4 as the inorganic additive. The formation of Cu was characterized using field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). This study investigated the impacts of the electrodeposition method (direct electrodeposition vs. pulse electrodeposition), voltages (‑0.4 V and ‑0.8 V), electrodeposition time (60s to 900s) and pulse cycles (50 cycles to 300 cycles), and FTO etching (fixed to 20s etching) towards the morphology and adhesion of Cu deposited. The grain size and thickness of Cu deposited vary with deposition time and pulse cycles. The voltage of -0.4 V successfully deposits shiny, metallic brown Cu onto FTO glass. Meanwhile, the voltage of -0.8 V gives powdery brown Cu on the surface. In addition, compared to direct electrodeposition (DD), pulse electrodeposition (PD) provides a more compact and homogeneous coverage of Cu onto FTO glass. The tape-test results also indicate that FTO etching by electrolysis reduction can improve the adhesion strength between deposited thin Cu film and the FTO glass. This work demonstrates a facile electrodeposition technique with substrate etching as an effective deposition of Cu metal with the potential for application in a wide range of fields.

 

Keywords: Adhesion; copper; electrodeposition; inorganic additive; FTO glass

 

Abstrak

Nanozarah logam kuprum (Cu) diendapkan di atas kaca FTO menggunakan kaedah pengendapan elektrokimia. Prekursor yang digunakan ialah CuSO4×5H2O dan Na2SO4 sebagai bahan tambah tidak organik. Pembentukan Cu dicirikan menggunakan mikroskop elektron pengimbasan pelepasan medan (FESEM), spektroskopi sinar-X penyebaran tenaga (EDX) dan pembelauan sinar-X (XRD). Penyelidikan ini mengkaji kesan kaedah elektroendapan (elektroendapan langsung lawan elektroendapan denyutan), voltan (‑0.4 V dan ‑0.8 V), masa elektroendapan (60s dan 900s) dan kitaran denyutan (50 hingga 300 kitaran) dan punaran FTO (ditetapkan selama 20s) terhadap morfologi dan lekatan Cu yang diendapkan. Saiz butiran dan ketebalan Cu yang diendapkan berbeza mengikut masa endapan dan kitaran denyutan. Voltan -0.4 V berjaya mengendapkan Cu coklat metalik berkilat pada kaca FTO. Sementara itu, voltan -0.8 V memberikan Cu coklat serbuk pada permukaan. Di samping itu, berbanding dengan elektroendapan langsung (DD), Elektroendapan denyutan (PD) memberikan liputan Cu yang lebih padat dan homogen di atas kaca FTO. Keputusan ujian pita juga menunjukkan bahawa FTO yang dipunarkan melalui penurunan elektrolisis boleh meningkatkan kekuatan lekatan antara filem Cu nipis terendap dan kaca FTO. Kajian ini menunjukkan teknik elektroendapan yang mudah dengan punaran substrat bagi endapan logam Cu yang berkesan dengan potensi untuk digunakan dalam pelbagai bidang.

 

Kata kunci: Bahan tambah tidak organik; elektroendapan; kaca FTO; kuprum; lekatan

 

REFERENCES

Adolf, J.D. 2008. Function of Additives in Copper Electrodeposition for Semiconductor Devices Metallization. Case Western Reserve University. Department of Chemical Engineering, Ed. Case Western Reserve University. https://books.google.com.my/books?id=CqqzDAEACAAJ

Alfadhli, S., Darwish, A. A. A., Soliman, S., El-Zaidia, E. F. M., Yahia, I. S., Laariedh, F., Alatawi, A., Bahamran, A., Alatawi, N.M. & Hamdalla, T.A. 2023. Structural characterizations and photoelectric performance of non-crystalline boron subphthalocyanine chloride films/FTO for photodiode applications. Journal of Non-Crystalline Solids 601: 122044. doi:10.1016/j.jnoncrysol.2022.122044

Alshehri, A.A. & Malik, M.A. 2020. Facile one-pot biogenic synthesis of Cu-Co-Ni trimetallic nanoparticles for enhanced photocatalytic dye degradation. Catalysts 10(10): 1138. doi:10.3390/catal10101138

Aravinda, C.L., Mayanna, S.M. & Muralidharan, V.S. 2000. Electrochemical behaviour of alkaline copper complexes. Journal of Chemical Sciences 112(5): 543-550. doi:10.1007/BF02709287

Babouri, L., Belmokre, K., Kabir, A., Abdelouas, A., Khettabi, R. & El Mendili, Y. 2019. Microstructure and crystallographic properties of Cu 77 Zn 21 alloy under the effect of heat treatment. Materials at High Temperatures 36(2): 165-172. doi:10.1080/09603409.2018.1499243

Bae, J.W., Koo, B.R., An, H.R. & Ahn, H.J. 2015. Surface modification of fluorine-doped tin oxide films using electrochemical etching for dye-sensitized solar cells. Ceramics International 41(10): 14668-14673. doi:10.1016/j.ceramint.2015.07.189

Bakthavatsalam, R., Ghosh, S., Biswas, R.K., Saxena, A., Raja, A., Thotiyl, M.O., Wadhai, S., Banpurkar, A.G. & Kundu, J. 2016. Solution chemistry-based nano-structuring of copper dendrites for efficient use in catalysis and superhydrophobic surfaces. RSC Advances 6: 8416-8430. doi:10.1039/C5RA22683J

Böhme, A., Sterl, F., Kath, E., Ubl, M., Manninen, V. & Giessen, H. 2019. Electrochemistry on inverse copper nanoantennas: Active plasmonic devices with extraordinarily large resonance shift. ACS Photonics 6(8): 1863-1868. doi:10.1021/ACSPHOTONICS.9B00716

Borkar, R., Dahake, R., Rayalu, S. & Bansiwal, A. 2018. Copper oxide nanograss for efficient and stable photoelectrochemical hydrogen production by water splitting. Journal of Electronic Materials 47(3): 1824-1831. doi:10.1007/s11664-017-5966-y

Braesch, G., Oshchepkov, A.G., Bonnefont, A., Asonkeng, F., Maurer, T., Maranzana, G., Savinova, E.R. & Chatenet, M. 2020. Nickel 3D structures enhanced by electrodeposition of nickel nanoparticles as high performance anodes for direct borohydride fuel cells. ChemElectroChem 7(7): 1789-1799. doi:10.1002/celc.202000254

Calcutt, V. 2001. August. Copper Applications in Metallurgy of Copper & Copper Alloys. Copper Development Association Inc.

Chaitra, U., Muhammed Ali, A.V., Mahesha, M.G., Kompa, A., Kekuda, D. & Mohan Rao, K. 2021. Property evaluation of spin coated Al doped ZnO thin films and Au/AZO/FTO Schottky diodes. Superlattices and Microstructures 155: 106903. doi:10.1016/j.spmi.2021.106903

Chang, T.W., Tseng, C.C., Chen, D.W., Wu, G., Yang, C.L. & Chen, L.C. 2021. Preparation and characterization of thin-film solar cells with Ag/C60/MAPbI3/CZTSe/Mo/FTO multilayered structures. Molecules 26(12): 3516. doi:10.3390/molecules26123516

Chen, H., Yang, T., Liu, F. & Li, W. 2019. Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sensors and Actuators B: Chemical 286: 401-407. doi:10.1016/j.snb.2018.10.036

Danilovic, N., Subbaraman, R., Strmcnik, D., Chang, K.C., Paulikas, A.P., Stamenkovic, V.R. & Markovic, N.M. 2012. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angewandte Chemie 124(50): 12663-12666. doi:10.1002/ange.201204842

Das, M.K., Urumarudappa, S.K.J., Kamal, S., Widiadita, Y., Mahamud, A., Saito, T.I. & Bovornratanaraks, T. 2022. Effect of pulse electrodeposition parameters on the microstructure and mechanical properties of Ni–W/B nanocomposite coatings. Nanomaterials 12(11): 1871. doi:10.3390/nano12111871

Dubale, A.A., Pan, C.J., Tamirat, A.G., Chen, H.M., Su, W.N., Chen, C.H., Rick, J., Ayele, D.W., Aragaw, B.A., Lee, J.F., Yang, Y.W. & Hwang, B.J. 2015. Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. Journal of Materials Chemistry A 3(23): 12482-12499. doi:10.1039/C5TA01961C

Esmaili, S., Bahrololoom, M.E. & Kavanagh, K.L. 2011. Electrodeposition, characterization and morphological investigations of NiFe/Cu multilayers prepared by pulsed galvanostatic, dual bath technique. Materials Characterization 62(2): 204-210. doi:10.1016/j.matchar.2010.11.017

Grujicic, D. & Pesic, B. 2002. Electrodeposition of copper: The nucleation mechanisms. Electrochimica Acta 47(18): 2901-2912. doi:10.1016/S0013-4686(02)00161-5

Gu, C.D., You, Y.H., Wang, X.L. & Tu, J.P. 2012. Electrodeposition, structural, and corrosion properties of Cu films from a stable deep eutectics system with additive of ethylene diamine. Surface and Coatings Technology 209: 117-123. doi:10.1016/j.surfcoat.2012.08.047

Gyftou, P., Pavlatou, E.A. & Spyrellis, N. 2008. Effect of pulse electrodeposition parameters on the properties of Ni/nano-SiC composites. Applied Surface Science 254(18): 5910-5916. doi:10.1016/j.apsusc.2008.03.151

Haba, T., Ikeda, K. & Uosaki, K. 2019. Electrochemical and in situ SERS study of the role of an inhibiting additive in selective electrodeposition of copper in sulfuric acid. Electrochemistry Communications 98: 19-22. doi:10.1016/J.ELECOM.2018.11.007

Han, Y.J., Zhang, X. & Leach, G.W. 2014. Shape control of electrodeposited copper films and nanostructures through additive effects. Langmuir 30(12): 3589-3598. doi:10.1021/LA500001J

He, J., Feng, H., Wang, T., Wang, T. & Zeng, H. 2018. Morphology-controlled electrodeposition of copper nanospheres onto FTO for enhanced photocatalytic hydrogen production. Chinese Journal of Chemistry 36(1): 31-36. doi:10.1002/cjoc.201700344

Huang, L.J., Zhang, G.M., Zhang, Y., Li, B.J., Ren, N.F., Zhao, L. & Wang, Y.L. 2021. Preparation and photoelectric properties of patterned Ag nanoparticles on FTO/glass substrate by laser etching and driving layer strategy. Acta Metallurgica Sinica (English Letters) 34(7): 973-985. doi:10.1007/s40195-020-01169-y

Jaikumar, A., Santhanam, K.S.V., Kandlikar, S.G., Raya, I.B. & Raghupathi, P. 2015. Electrochemical deposition of copper on graphene with high heat transfer coefficient. ECS Transactions 66(30): 55-64. doi:10.1149/06630.0055ecst

Jeong, D., Jo, W., Jeong, J., Kim, T., Han, S., Son, M.K. & Jung, H. 2022. Characterization of Cu2O/CuO heterostructure photocathode by tailoring CuO thickness for photoelectrochemical water splitting. RSC Advances 12(5): 2632-2640. doi:10.1039/D1RA08863G

Jothi, L., Jaganathan, S.K. & Nageswaran, G. 2020. An electrodeposited Au nanoparticle/porous graphene nanoribbon composite for electrochemical detection of alpha-fetoprotein. Materials Chemistry and Physics 242: 122514. doi:10.1016/j.matchemphys.2019.122514

Kaewvilai, A., Tanathakorn, R., Laobuthee, A., Rattanasakulthong, W. & Rodchanarowan, A. 2017. Electroless copper plating on nano-silver activated glass substrate: A single-step activation. Surface and Coatings Technology 319: 260-266. doi:10.1016/J.SURFCOAT.2017.04.018

Kannimuthu, K., Sangeetha, K., Sam Sankar, S., Karmakar, A., Madhu, R. & Kundu, S. 2021. Investigation on nanostructured Cu-based electrocatalysts for improvising water splitting: A review. Inorganic Chemistry Frontiers 8(1): 234-272. doi:10.1039/D0QI01060J

Keshtmand, R., Zamani-Meymian, M.R., Mohamadkhani, F. & Taghavinia, N. 2021. Smoothing and coverage improvement of SnO2 electron transporting layer by NH4F treatment: Enhanced fill factor and efficiency of perovskite solar cells. Solar Energy 228: 253-262. doi:10.1016/j.solener.2021.09.068

Khan, H., Yerramilli, A.S., D’Oliveira, A., Alford, T.L., Boffito, D.C. & Patience, G.S. 2020. Experimental methods in chemical engineering: X‐ray diffraction spectroscopy - XRD. The Canadian Journal of Chemical Engineering 98(6): 1255-1266. doi:10.1002/cjce.23747

Khaniche, B., Zouaoui, A. & Zegadi, A. 2020. Structural study and electrochemical deposition of a copper layer on n-Si. Emerging Materials Research 9(2): 1-6. doi:10.1680/jemmr.19.00051

Khelladi, M.R., Mentar, L., Azizi, A., Sahari, A. & Kahoul, A. 2009. Electrochemical nucleation and growth of copper deposition onto FTO and n-Si(100) electrodes. Materials Chemistry and Physics 115(1): 385-390. doi:10.1016/j.matchemphys.2008.12.017

Kim, E.K., Yoon, S.J., Bui, H.T., Patil, S.A., Bathula, C., Shrestha, N.K., Im, H. & Han, S.H. 2020. Epitaxial electrodeposition of single crystal MoTe2 nanorods and Li+ storage feasibility. Journal of Electroanalytical Chemistry 878: 114672. doi:10.1016/j.jelechem.2020.114672

Kim, G.H., Woo, H., Kim, S., An, T. & Lim, G. 2020. Highly-robust, solution-processed flexible transparent electrodes with a junction-free electrospun nanofiber network. RSC Advances 10(17): 9940-9948. doi:10.1039/C9RA10278G

Kotok, V.A., Malyshev, V.V., Solovov, V.A. & Kovalenko, V.L. 2017. Soft electrochemical etching of FTO-coated glass for use in Ni(OH) 2 -based electrochromic devices. ECS Journal of Solid State Science and Technology 6(12): P772-P777. doi:10.1149/2.0071712jss

Laverty, S.J., Feng, H. & Maguire, P. 1997. Adhesion of copper electroplated to thin film tin oxide for electrodes in flat panel displays. J. Electrochem. Soc. 144(6): 2166-2170.

Lee, K., Kim, A.Y., Park, J.H., Jung, H.G., Choi, W., Lee, H.Y. & Lee, J.K. 2014. Effect of micro-patterned fluorine-doped tin oxide films on electrochromic properties of Prussian blue films. Applied Surface Science 313: 864-869. doi:10.1016/j.apsusc.2014.06.092

Li, B. & Zhang, W. 2020. Facile synthesis and electrochemical properties of a novel Ni-B/TiC composite coating via ultrasonic-assisted electrodeposition. Ultrasonics Sonochemistry 61: 104837. doi:10.1016/j.ultsonch.2019.104837

Li, J., Zhou, Y.H., Zhong, D.Y., Li, X.F. & Zhang, J.H. 2019. Simultaneous enhancement of electrical performance and negative bias illumination stability for low-temperature solution-processed SnO 2 thin-film transistors by fluorine incorporation. IEEE Transactions on Electron Devices 66(10): 4205-4210. doi:10.1109/TED.2019.2936484

Li, X., Natsuki, J. & Natsuki, T. 2021. “Sandwich” copper nanoparticle @ graphene oxide composites: High-Temperature stability and long-term stable conductivity. Materials Characterization 172: 110887. doi:10.1016/j.matchar.2021.110887

Lim, J.D., Lee, P.M. & Chen, Z. 2017. Understanding the bonding mechanisms of directly sputtered copper thin film on an alumina substrate. Thin Solid Films 634: 6-14. doi:10.1016/j.tsf.2017.05.005

Liu, J.S., Laverty, S.J., Maguire, P., McLaughlin, J. & Molloy, J. 1994. The role of an electrolysis reduction in copper‐electroplating on transparent semiconductor tin oxide. Journal of The Electrochemical Society 141(4): L38-L40. doi:10.1149/1.2054872

Luo, J., Steier, L., Son, M.K., Schreier, M., Mayer, M.T. & Grätzel, M. 2016. Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Letters 16(3): 1848-1857. doi:10.1021/ACS.NANOLETT.5B04929/SUPPL_FILE/NL5B04929_SI_001.PDF

Maduraiveeran, G., Sasidharan, M. & Jin, W. 2019. Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Progress in Materials Science 106: 100574. doi:10.1016/j.pmatsci.2019.100574

Mandke, M.V. & Pathan, H.M. 2012. Electrochemical growth of copper nanoparticles: Structural and optical properties. Journal of Electroanalytical Chemistry 686: 19-24. doi:10.1016/j.jelechem.2012.09.004

Mathur, J. 2013. Effect of electrodeposition parameters on morphology of copper thin films. IOSR Journal of Engineering 3(8): 55-61. doi:10.9790/3021-03835561

Mentar, L. 2011. Early stages of cobalt-copper alloys electrodeposition onto fluorine-doped tin oxide electrodes in sulfate solution. Oriental Journal of Chemistry 27(2): 477-483.

Mladenović, I.O., Bošković, M.V., Vuksanović, M.M., Nikolić, N.D., Lamovec, J.S., Vasiljević-Radović, D.G. & Radojević, V.J. 2022. Structural, mechanical and electrical characteristics of copper coatings obtained by various electrodeposition processes. Electronics 11(3): 443. doi:10.3390/electronics11030443

More, V. & Bhargava, P. 2017. Electrodeposited copper current collecting fingers for DSSCs. Materials Science in Semiconductor Processing 68: 178-185. doi:10.1016/j.mssp.2017.05.013

Nasirpouri, F., Alipour, K., Daneshvar, F. & Sanaeian, M.R. 2020. Electrodeposition of anticorrosion nanocoatings. In Corrosion Protection at the Nanoscale, edited by Rajendran, S., Nguyen, T.A., Kakooei, S., Yeganeh, M. & Li, Y. Elsevier. pp. 473-497. doi:10.1016/b978-0-12-819359-4.00024-6

Nikolić, N.D. & Popov, K.I. 2010. Hydrogen co-deposition effects on the structure of electrodeposited copper. In Electrodeposition. Modern Aspects of Electrochemistry, edited by Djokic, S. New York: Springer. 48: 1-70. doi:10.1007/978-1-4419-5589-0_1

Norziehana, N., Isa, C., Mohd, Y., Hafizudden, M., Zaki, M., Aminah, S. & Mohamad, S. 2017. Electrodeposition and characterization of copper coating on stainless steel substrate from alkaline copper solution containing ethylenediaminetetraacetate (EDTA). Journal of Mechanical Engineering 2(1): 127-138.

Odetola, P., Popoola, P., Popoola, O. & Delport, D. 2016. Parametric variables in electro-deposition of composite coatings. Electrodeposition of Composite Materials. InTech. doi:10.5772/62010

Olson, T.S., Atanassov, P. & Brevnov, D.A. 2005. Electrodeposition of gold particles on aluminum substrates containing copper. The Journal of Physical Chemistry B 109(3): 1243-1250. doi:10.1021/jp045670w

Oo, T.Z., Devi Chandra, R., Yantara, N., Prabhakar, R.R., Wong, L.H., Mathews, N. & Mhaisalkar, S.G. 2012. Zinc Tin Oxide (ZTO) electron transporting buffer layer in inverted organic solar cell. Organic Electronics 13(5): 870-874. doi:10.1016/j.orgel.2012.01.011

Pan, J., Zhang, Z., Zhan, Z., Xiong, Y., Wang, Y., Cao, K. & Chen, Y. 2020. In situ generation of silver nanoparticles and nanocomposite films based on electrodeposition of carboxylated chitosan. Carbohydrate Polymers 242: 116391. doi:10.1016/j.carbpol.2020.116391

Pavlović, M.G., Pavlović, L.J., Maksimović, V.M., Nikolić, N.D. & Popov, K.I. 2010. Characterization and morphology of copper powder particles as a function of different electrolytic regimes. Int. J. Electrochem. Sci. 5: 1862-1878. www.electrochemsci.org.

Qing, Y., Hu, C., Yang, C., An, K., Tang, F., Tan, J. & Liu, C. 2017. Rough structure of electrodeposition as a template for an ultrarobust self-cleaning surface. ACS Applied Materials & Interfaces 9(19): 16571-16580. doi:10.1021/acsami.6b15745

Qiu, R., Cha, H.G., Noh, H.B., Shim, Y.B., Zhang, X.L., Qiao, R., Zhang, D., Kim, Y.I., Pal, U. & Kang, Y.S. 2009. Preparation of dendritic copper nanostructures and their characterization for electroreduction. The Journal of Physical Chemistry C 113(36): 15891-15896. doi:10.1021/jp904222b

Rajput, A., Kundu, A. & Chakraborty, B. 2021. Recent progress on copper‐based electrode materials for overall water‐splitting. ChemElectroChem 8(10): 1698-1722. doi:10.1002/celc.202100307

Rana, M.S., Rahman, M.A. & Alam, A.M.S. 2014. A CV study of copper complexation with guanine using glassy carbon electrode in aqueous medium. ISRN Electrochemistry 2014: 1-7. doi:10.1155/2014/308382

Rashidi, A.M. & Amadeh, A. 2008. The effect of current density on the grain size of electrodeposited nanocrystalline nickel coatings. Surface and Coatings Technology 202(16): 3772-3776. doi:10.1016/j.surfcoat.2008.01.018

Rasouli, F., Rouhollahi, A. & Ghahramanifard, F. 2019. Gradient doping of copper in ZnO nanorod photoanode by electrodeposition for enhanced charge separation in photoelectrochemical water splitting. Superlattices and Microstructures 125: 177-189. doi:10.1016/j.spmi.2018.08.026

Ren, N., Wang, W., Li, B., Huang, L. & Zhang, Y. 2021. Preparation and property optimization of silver-embedded FTO transparent conductive thin films by laser etching and coating AZO layer. Journal of Materials Science: Materials in Electronics 32(8): 10644-10661. doi:10.1007/s10854-021-05720-0

Riveros, G., León, M., Ramírez, D., Hernández, L., Martín, F., Romero, R. & Dalchiele, E.A. 2020. Study of the nucleation and growth mechanisms of copper electrodeposition on bare and nitrogen-doped reduced graphene oxide modified SnO 2 :F/glass substrates. Journal of The Electrochemical Society 167(12): 122508. doi:10.1149/1945-7111/abb281

Sadana, Y.N., Deshpande, A.K. & Gedye, R.N. 1982. Electrodeposition of alloys XIII: Electrodeposition of Cu-Ni alloys from solutions containing L-asparagine. Surface Technology 17(2): 111-123. doi:10.1016/0376-4583(82)90013-9

Schiavi, P.G., Farina, L., Zanoni, R., Altimari, P., Cojocariu, I., Rubino, A., Navarra, M.A., Panero, S. & Pagnanelli, F. 2019. Electrochemical synthesis of nanowire anodes from spent lithium ion batteries. Electrochimica Acta 319: 481-489. doi:10.1016/j.electacta.2019.07.024

Schnebele, E., Jaiswal, K., Luco, N. & Nassar, N.T. 2019. Natural hazards and mineral commodity supply: Quantifying risk of earthquake disruption to South American copper supply. Resources Policy 63: 101430. doi:10.1016/j.resourpol.2019.101430

Sekar, R. 2017. Synergistic effect of additives on electrodeposition of copper from cyanide-free electrolytes and its structural and morphological characteristics. Transactions of Nonferrous Metals Society of China 27(7): 1665-1676. doi:10.1016/S1003-6326(17)60189-4

Shivakumara, S., Manohar, U., Arthoba Naik, Y. & Venkatesha, T.V. 2007. Influence of additives on electrodeposition of bright Zn-Ni alloy on mild steel from acid sulphate bath. Bulletin of Materials Science 30(5): 455-462. doi:10.1007/s12034-007-0072-z

Smith, J.R., Campbell, S.A. & Walsh, F.C. 1995. Cyclic voltammetry at metal electrodes. Transactions of the IMF 73(2): 72-78. doi:10.1080/00202967.1995.11871062

Taheraslani, M. & Gardeniers, H. 2019. High-resolution SEM and EDX characterization of deposits formed by CH4+Ar DBD plasma processing in a packed bed reactor. Nanomaterials 9(4): 589. doi:10.3390/nano9040589

Tang, M.H., Chakthranont, P. & Jaramillo, T.F. 2017. Top-down fabrication of fluorine-doped tin oxide nanopillar substrates for solar water splitting. RSC Advances 7(45): 28350-28357. doi:10.1039/C7RA02937C

Tao, P., Chen, Y., Cai, W. & Meng, Z. 2021. Effect of copper sulfate and sulfuric acid on blind hole filling of hdi circuit boards by electroplating. Materials 14(1): 1-11. doi:10.3390/MA14010085

Tarditi, A.M., Bosko, M.L. & Cornaglia, L.M. 2017. 3.1 Electroless plating of Pd binary and ternary alloys and surface characteristics for application in hydrogen separation. Comprehensive Materials Finishing 3-3: 1-24. doi:10.1016/B978-0-12-803581-8.09166-9

Toupin, J., Strub, H., Kressmann, S., Boudot, M., Artero, V. & Laberty-Robert, C. 2017. Engineering n-p junction for photo-electrochemical hydrogen production. Physical Chemistry Chemical Physics 19(45): 30675-30682. doi:10.1039/c7cp05122k

Tran, D.T.T., Nguyen, D.Q., Pham, C.H., Tran, L.D. & Nguyen, D.T. 2020. Facile synthesis of CuO/ITO film via the chronoamperometric electrodeposition for nonenzymatic glucose sensing. Communications in Physics 30(2): 161. doi:10.15625/0868-3166/30/2/14801

Veerakumar, P., Sangili, A., Manavalan, S., Thanasekaran, P. & Lin, K.C. 2020. Research progress on porous carbon supported metal/metal oxide nanomaterials for supercapacitor electrode applications. Industrial & Engineering Chemistry Research 59(14): 6347-6374. doi:10.1021/acs.iecr.9b06010

Vuong, D.T., Hoang, H.M., Tran, N.H. & Kim, H.C. 2020. Pulsed electrodeposition for copper nanowires. Crystals 10(3): 218. doi:10.3390/cryst10030218

Wahyudi, S., Soepriyanto, S., Mubarok, M.Z. & Sutarno. 2019. Effect of pulse parameters on the particle size of copper powder electrodeposition. IOP Conference Series: Materials Science and Engineering 547(1): 012020. doi:10.1088/1757-899X/547/1/012020

Wang, K., Ke, X., Wang, W., Tu, C., Luo, D. & Zhang, M. 2020. The impacts of fluorine-doped tin oxide photonic crystals on a cadmium sulfide-based photoelectrode for improved solar energy conversion under lower incidence. Catalysts 10(11): 1252. doi:10.3390/catal10111252

Xu, Y., Zhu, J., Feng, J., Wang, Y., Wu, X., Ma, P., Zhang, X., Wang, G. & Yan, X. 2021. A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive. Energy Storage Materials 38: 299-308. doi:10.1016/j.ensm.2021.03.019

Yun, Y., Dong, Z., Shanov, V. N., Doepke, A., Heineman, W. R., Halsall, H. B., Bhattacharya, A., Wong, D.K.Y. & Schluz, M.J. 2008. Fabrication and characterization of carbon nanotube array electrodes with gold nanoparticle tips. Sensors and Actuators B: Chemical 133(1): 208-212. doi:10.1016/j.snb.2008.02.019

Zhang, J., Han, J., Shi, Z., Ju, Y., Zhang, Z. & Gu, M. 2019. Fabrication and enhanced H2O2-sensing properties of the uniform porous FTO glasses with tunable pore sizes and densities. Applied Surface Science 465: 357-361. doi:10.1016/j.apsusc.2018.09.191

Zhang, Z., Jiang, C., Cai, F., Fu, P., Ma, N. & Ji, V. 2015. Two stages for the evolution of crystallite size and texture of electrodeposited Ni–ZrC composite coating. Surface and Coatings Technology 261: 122-129. doi:10.1016/j.surfcoat.2014.11.048

Zhao, G., Xuan, J., Liu, X., Jia, F., Sun, Y., Sun, M., Yin, G. & Liu, B. 2019. Low-cost and high-performance ZnO nanoclusters gas sensor based on new-type FTO electrode for the low-concentration H2S gas detection. Nanomaterials 9(3): 435. doi:10.3390/nano9030435

Zhao, J., Sun, L., Canepa, S., Sun, H., Yesibolati, M.N., Sherburne, M., Xu, R., Sritharan, T., Loo, J.S.C., Ager III, J.W., Barber, J., Mølhave, K. & Xu, Z.J. 2017. Phosphate tuned copper electrodeposition and promoted formic acid selectivity for carbon dioxide reduction. Journal of Materials Chemistry A 5(23): 11905-11916. doi:10.1039/C7TA01871A

 

*Corresponding author; email: lorna_jm@ukm.edu.my

 

 

 

 

 

 

 

 

previous