Sains Malaysiana 52(8)(2023): 2209-2224
http://doi.org/10.17576/jsm-2023-5208-04
Copper Nanoparticles Coating on FTO with Improved
Adhesion using Direct and Pulse Electrodeposition Techniques from a Simple
Copper Sulphate Solution
(Salutan
Nanozarah Kuprum pada FTO dengan Lekatan yang Diperbaiki menggunakan Teknik
Elektrodeposisi Terus dan Nadi daripada Larutan Kuprum Sulfat Ringkas)
NUR AZLINA ADRIS1, LORNA JEFFERY MINGGU1,*,
KHUZAIMAH ARIFIN1,2, ROZAN MOHAMAD YUNUS1, MOHAMAD AZUWA
MOHAMED1,3, MASLIANA MUSLIMIN4 & MOHAMMAD B. KASSIM1,3
1Fuel Cell Institute, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
2Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Building 224, KST BJ Habibie, South Tangerang 15314, Banten, Indonesia
3Department of Chemical Sciences, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
4Hydrogen Technology Unit, Materials Technology Group,
Industrial Technology Division, Malaysian Nuclear Agency, 43000 Kajang,
Selangor, Malaysia
Received:
10 April 2023/Accepted: 14 July 2023
Abstract
Copper (Cu) metal nanoparticles were deposited onto
FTO glass using the electrodeposition method. The precursor used was CuSO4×5H2O with Na2SO4 as
the inorganic additive. The formation of Cu was characterized using field
emission scanning electron microscopy (FESEM), energy-dispersive X-ray
spectroscopy (EDX), and X-ray diffraction (XRD). This
study investigated the impacts of the electrodeposition method (direct
electrodeposition vs. pulse electrodeposition), voltages (‑0.4 V and
‑0.8 V), electrodeposition time (60s to 900s) and pulse cycles (50 cycles
to 300 cycles), and FTO etching (fixed to 20s etching) towards the morphology
and adhesion of Cu deposited. The grain size and thickness of Cu deposited
vary with deposition time and pulse cycles. The voltage of -0.4 V successfully
deposits shiny, metallic brown Cu onto FTO glass. Meanwhile, the voltage of
-0.8 V gives powdery brown Cu on the surface. In addition, compared to direct
electrodeposition (DD), pulse electrodeposition (PD) provides a more compact
and homogeneous coverage of Cu onto FTO glass. The tape-test results also
indicate that FTO etching by electrolysis reduction can improve the adhesion
strength between deposited thin Cu film and the FTO glass. This work
demonstrates a facile electrodeposition technique with substrate etching as an
effective deposition of Cu metal with the potential for application in a wide
range of fields.
Keywords: Adhesion; copper;
electrodeposition; inorganic additive; FTO glass
Abstrak
Nanozarah logam kuprum (Cu) diendapkan di atas kaca FTO menggunakan
kaedah pengendapan elektrokimia. Prekursor yang digunakan ialah CuSO4×5H2O dan Na2SO4 sebagai bahan tambah tidak organik. Pembentukan Cu dicirikan menggunakan
mikroskop elektron pengimbasan pelepasan medan (FESEM), spektroskopi sinar-X
penyebaran tenaga (EDX) dan pembelauan sinar-X (XRD). Penyelidikan
ini mengkaji kesan kaedah elektroendapan (elektroendapan langsung lawan
elektroendapan denyutan), voltan (‑0.4 V dan ‑0.8 V),
masa elektroendapan (60s dan 900s) dan kitaran denyutan (50 hingga 300 kitaran)
dan punaran FTO (ditetapkan selama 20s) terhadap morfologi dan lekatan Cu yang
diendapkan. Saiz butiran dan ketebalan Cu yang diendapkan berbeza mengikut
masa endapan dan kitaran denyutan. Voltan -0.4 V berjaya mengendapkan Cu coklat
metalik berkilat pada kaca FTO. Sementara itu, voltan -0.8 V memberikan Cu
coklat serbuk pada permukaan. Di samping itu, berbanding dengan elektroendapan
langsung (DD), Elektroendapan denyutan (PD) memberikan liputan Cu yang lebih
padat dan homogen di atas kaca FTO. Keputusan ujian pita juga menunjukkan
bahawa FTO yang dipunarkan melalui penurunan elektrolisis boleh meningkatkan
kekuatan lekatan antara filem Cu nipis terendap dan kaca FTO. Kajian ini
menunjukkan teknik elektroendapan yang mudah dengan punaran substrat bagi
endapan logam Cu yang berkesan dengan potensi untuk digunakan dalam pelbagai
bidang.
Kata kunci: Bahan tambah tidak organik; elektroendapan; kaca FTO;
kuprum; lekatan
REFERENCES
Adolf,
J.D. 2008. Function of Additives in Copper Electrodeposition for
Semiconductor Devices Metallization. Case Western Reserve University.
Department of Chemical Engineering, Ed. Case Western Reserve University.
https://books.google.com.my/books?id=CqqzDAEACAAJ
Alfadhli,
S., Darwish, A. A. A., Soliman, S., El-Zaidia, E. F. M., Yahia, I. S.,
Laariedh, F., Alatawi, A., Bahamran, A., Alatawi, N.M. & Hamdalla, T.A.
2023. Structural characterizations and photoelectric performance of
non-crystalline boron subphthalocyanine chloride films/FTO for photodiode applications. Journal of Non-Crystalline Solids 601: 122044.
doi:10.1016/j.jnoncrysol.2022.122044
Alshehri,
A.A. & Malik, M.A. 2020. Facile one-pot biogenic synthesis of Cu-Co-Ni
trimetallic nanoparticles for enhanced photocatalytic dye degradation. Catalysts 10(10): 1138. doi:10.3390/catal10101138
Aravinda,
C.L., Mayanna, S.M. & Muralidharan, V.S. 2000. Electrochemical behaviour of
alkaline copper complexes. Journal of Chemical Sciences 112(5): 543-550.
doi:10.1007/BF02709287
Babouri,
L., Belmokre, K., Kabir, A., Abdelouas, A., Khettabi, R. & El Mendili, Y.
2019. Microstructure and crystallographic properties of Cu 77 Zn 21 alloy under
the effect of heat treatment. Materials at High Temperatures 36(2):
165-172. doi:10.1080/09603409.2018.1499243
Bae,
J.W., Koo, B.R., An, H.R. & Ahn, H.J. 2015. Surface modification of
fluorine-doped tin oxide films using electrochemical etching for dye-sensitized
solar cells. Ceramics International 41(10): 14668-14673.
doi:10.1016/j.ceramint.2015.07.189
Bakthavatsalam,
R., Ghosh, S., Biswas, R.K., Saxena, A., Raja, A., Thotiyl, M.O., Wadhai, S.,
Banpurkar, A.G. & Kundu, J. 2016. Solution chemistry-based nano-structuring
of copper dendrites for efficient use in catalysis and superhydrophobic
surfaces. RSC Advances 6: 8416-8430. doi:10.1039/C5RA22683J
Böhme,
A., Sterl, F., Kath, E., Ubl, M., Manninen, V. & Giessen, H. 2019.
Electrochemistry on inverse copper nanoantennas: Active plasmonic devices with
extraordinarily large resonance shift. ACS Photonics 6(8): 1863-1868.
doi:10.1021/ACSPHOTONICS.9B00716
Borkar,
R., Dahake, R., Rayalu, S. & Bansiwal, A. 2018. Copper oxide nanograss for
efficient and stable photoelectrochemical hydrogen production by water
splitting. Journal of Electronic Materials 47(3): 1824-1831.
doi:10.1007/s11664-017-5966-y
Braesch,
G., Oshchepkov, A.G., Bonnefont, A., Asonkeng, F., Maurer, T., Maranzana, G.,
Savinova, E.R. & Chatenet, M. 2020. Nickel 3D structures enhanced by
electrodeposition of nickel nanoparticles as high performance anodes for direct
borohydride fuel cells. ChemElectroChem 7(7): 1789-1799.
doi:10.1002/celc.202000254
Calcutt,
V. 2001. August. Copper Applications in Metallurgy of Copper & Copper
Alloys. Copper Development Association Inc.
Chaitra,
U., Muhammed Ali, A.V., Mahesha, M.G., Kompa, A., Kekuda, D. & Mohan Rao,
K. 2021. Property evaluation of spin coated Al doped ZnO thin films and
Au/AZO/FTO Schottky diodes. Superlattices and Microstructures 155:
106903. doi:10.1016/j.spmi.2021.106903
Chang,
T.W., Tseng, C.C., Chen, D.W., Wu, G., Yang, C.L. & Chen, L.C. 2021.
Preparation and characterization of thin-film solar cells with
Ag/C60/MAPbI3/CZTSe/Mo/FTO multilayered structures. Molecules 26(12):
3516. doi:10.3390/molecules26123516
Chen,
H., Yang, T., Liu, F. & Li, W. 2019. Electrodeposition of gold
nanoparticles on Cu-based metal-organic framework for the electrochemical
detection of nitrite. Sensors and Actuators B: Chemical 286: 401-407.
doi:10.1016/j.snb.2018.10.036
Danilovic,
N., Subbaraman, R., Strmcnik, D., Chang, K.C., Paulikas, A.P., Stamenkovic,
V.R. & Markovic, N.M. 2012. Enhancing the alkaline hydrogen evolution
reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angewandte
Chemie 124(50): 12663-12666. doi:10.1002/ange.201204842
Das,
M.K., Urumarudappa, S.K.J., Kamal, S., Widiadita, Y., Mahamud, A., Saito, T.I.
& Bovornratanaraks, T. 2022. Effect of pulse electrodeposition parameters
on the microstructure and mechanical properties of Ni–W/B nanocomposite
coatings. Nanomaterials 12(11): 1871. doi:10.3390/nano12111871
Dubale,
A.A., Pan, C.J., Tamirat, A.G., Chen, H.M., Su, W.N., Chen, C.H., Rick, J.,
Ayele, D.W., Aragaw, B.A., Lee, J.F., Yang, Y.W. & Hwang, B.J. 2015.
Heterostructured Cu2O/CuO decorated with nickel as a highly efficient
photocathode for photoelectrochemical water reduction. Journal of Materials
Chemistry A 3(23): 12482-12499. doi:10.1039/C5TA01961C
Esmaili,
S., Bahrololoom, M.E. & Kavanagh, K.L. 2011. Electrodeposition,
characterization and morphological investigations of NiFe/Cu multilayers
prepared by pulsed galvanostatic, dual bath technique. Materials
Characterization 62(2): 204-210. doi:10.1016/j.matchar.2010.11.017
Grujicic,
D. & Pesic, B. 2002. Electrodeposition of copper: The nucleation
mechanisms. Electrochimica Acta 47(18): 2901-2912.
doi:10.1016/S0013-4686(02)00161-5
Gu,
C.D., You, Y.H., Wang, X.L. & Tu, J.P. 2012. Electrodeposition, structural,
and corrosion properties of Cu films from a stable deep eutectics system with
additive of ethylene diamine. Surface and Coatings Technology 209:
117-123. doi:10.1016/j.surfcoat.2012.08.047
Gyftou,
P., Pavlatou, E.A. & Spyrellis, N. 2008. Effect of pulse electrodeposition
parameters on the properties of Ni/nano-SiC composites. Applied Surface
Science 254(18): 5910-5916. doi:10.1016/j.apsusc.2008.03.151
Haba,
T., Ikeda, K. & Uosaki, K. 2019. Electrochemical and in situ SERS
study of the role of an inhibiting additive in selective electrodeposition of
copper in sulfuric acid. Electrochemistry Communications 98: 19-22.
doi:10.1016/J.ELECOM.2018.11.007
Han,
Y.J., Zhang, X. & Leach, G.W. 2014. Shape control of electrodeposited
copper films and nanostructures through additive effects. Langmuir 30(12): 3589-3598. doi:10.1021/LA500001J
He,
J., Feng, H., Wang, T., Wang, T. & Zeng, H. 2018. Morphology-controlled
electrodeposition of copper nanospheres onto FTO for enhanced photocatalytic
hydrogen production. Chinese Journal of Chemistry 36(1): 31-36.
doi:10.1002/cjoc.201700344
Huang,
L.J., Zhang, G.M., Zhang, Y., Li, B.J., Ren, N.F., Zhao, L. & Wang, Y.L.
2021. Preparation and photoelectric properties of patterned Ag nanoparticles on
FTO/glass substrate by laser etching and driving layer strategy. Acta
Metallurgica Sinica (English Letters) 34(7): 973-985.
doi:10.1007/s40195-020-01169-y
Jaikumar,
A., Santhanam, K.S.V., Kandlikar, S.G., Raya, I.B. & Raghupathi, P. 2015.
Electrochemical deposition of copper on graphene with high heat transfer
coefficient. ECS Transactions 66(30): 55-64. doi:10.1149/06630.0055ecst
Jeong,
D., Jo, W., Jeong, J., Kim, T., Han, S., Son, M.K. & Jung, H. 2022.
Characterization of Cu2O/CuO heterostructure photocathode by tailoring CuO
thickness for photoelectrochemical water splitting. RSC Advances 12(5):
2632-2640. doi:10.1039/D1RA08863G
Jothi,
L., Jaganathan, S.K. & Nageswaran, G. 2020. An electrodeposited Au
nanoparticle/porous graphene nanoribbon composite for electrochemical detection
of alpha-fetoprotein. Materials Chemistry and Physics 242: 122514.
doi:10.1016/j.matchemphys.2019.122514
Kaewvilai,
A., Tanathakorn, R., Laobuthee, A., Rattanasakulthong, W. & Rodchanarowan,
A. 2017. Electroless copper plating on nano-silver activated glass substrate: A
single-step activation. Surface and Coatings Technology 319: 260-266.
doi:10.1016/J.SURFCOAT.2017.04.018
Kannimuthu,
K., Sangeetha, K., Sam Sankar, S., Karmakar, A., Madhu, R. & Kundu, S.
2021. Investigation on nanostructured Cu-based electrocatalysts for improvising
water splitting: A review. Inorganic Chemistry Frontiers 8(1): 234-272.
doi:10.1039/D0QI01060J
Keshtmand,
R., Zamani-Meymian, M.R., Mohamadkhani, F. & Taghavinia, N. 2021. Smoothing
and coverage improvement of SnO2 electron transporting layer by NH4F treatment:
Enhanced fill factor and efficiency of perovskite solar cells. Solar Energy 228: 253-262. doi:10.1016/j.solener.2021.09.068
Khan,
H., Yerramilli, A.S., D’Oliveira, A., Alford, T.L., Boffito, D.C. &
Patience, G.S. 2020. Experimental methods in chemical engineering: X‐ray
diffraction spectroscopy - XRD. The Canadian Journal of Chemical Engineering 98(6): 1255-1266. doi:10.1002/cjce.23747
Khaniche,
B., Zouaoui, A. & Zegadi, A. 2020. Structural study and electrochemical
deposition of a copper layer on n-Si. Emerging Materials Research 9(2):
1-6. doi:10.1680/jemmr.19.00051
Khelladi,
M.R., Mentar, L., Azizi, A., Sahari, A. & Kahoul, A. 2009. Electrochemical
nucleation and growth of copper deposition onto FTO and n-Si(100) electrodes. Materials
Chemistry and Physics 115(1): 385-390.
doi:10.1016/j.matchemphys.2008.12.017
Kim,
E.K., Yoon, S.J., Bui, H.T., Patil, S.A., Bathula, C., Shrestha, N.K., Im, H.
& Han, S.H. 2020. Epitaxial electrodeposition of single crystal MoTe2
nanorods and Li+ storage feasibility. Journal of Electroanalytical Chemistry 878: 114672. doi:10.1016/j.jelechem.2020.114672
Kim,
G.H., Woo, H., Kim, S., An, T. & Lim, G. 2020. Highly-robust,
solution-processed flexible transparent electrodes with a junction-free
electrospun nanofiber network. RSC Advances 10(17): 9940-9948.
doi:10.1039/C9RA10278G
Kotok,
V.A., Malyshev, V.V., Solovov, V.A. & Kovalenko, V.L. 2017. Soft
electrochemical etching of FTO-coated glass for use in Ni(OH) 2 -based
electrochromic devices. ECS Journal of Solid State Science and Technology 6(12): P772-P777. doi:10.1149/2.0071712jss
Laverty,
S.J., Feng, H. & Maguire, P. 1997. Adhesion of copper electroplated to thin
film tin oxide for electrodes in flat panel displays. J. Electrochem. Soc. 144(6): 2166-2170.
Lee,
K., Kim, A.Y., Park, J.H., Jung, H.G., Choi, W., Lee, H.Y. & Lee, J.K.
2014. Effect of micro-patterned fluorine-doped tin oxide films on
electrochromic properties of Prussian blue films. Applied Surface Science 313: 864-869. doi:10.1016/j.apsusc.2014.06.092
Li,
B. & Zhang, W. 2020. Facile synthesis and electrochemical properties of a
novel Ni-B/TiC composite coating via ultrasonic-assisted electrodeposition. Ultrasonics
Sonochemistry 61: 104837. doi:10.1016/j.ultsonch.2019.104837
Li,
J., Zhou, Y.H., Zhong, D.Y., Li, X.F. & Zhang, J.H. 2019. Simultaneous
enhancement of electrical performance and negative bias illumination stability
for low-temperature solution-processed SnO 2 thin-film transistors by fluorine
incorporation. IEEE Transactions on Electron Devices 66(10): 4205-4210.
doi:10.1109/TED.2019.2936484
Li,
X., Natsuki, J. & Natsuki, T. 2021. “Sandwich” copper nanoparticle @
graphene oxide composites: High-Temperature stability and long-term stable
conductivity. Materials Characterization 172: 110887.
doi:10.1016/j.matchar.2021.110887
Lim,
J.D., Lee, P.M. & Chen, Z. 2017. Understanding the bonding mechanisms of
directly sputtered copper thin film on an alumina substrate. Thin Solid
Films 634: 6-14. doi:10.1016/j.tsf.2017.05.005
Liu,
J.S., Laverty, S.J., Maguire, P., McLaughlin, J. & Molloy, J. 1994. The
role of an electrolysis reduction in copper‐electroplating on transparent
semiconductor tin oxide. Journal of The Electrochemical Society 141(4):
L38-L40. doi:10.1149/1.2054872
Luo,
J., Steier, L., Son, M.K., Schreier, M., Mayer, M.T. & Grätzel, M. 2016.
Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano
Letters 16(3): 1848-1857.
doi:10.1021/ACS.NANOLETT.5B04929/SUPPL_FILE/NL5B04929_SI_001.PDF
Maduraiveeran,
G., Sasidharan, M. & Jin, W. 2019. Earth-abundant transition metal and
metal oxide nanomaterials: Synthesis and electrochemical applications. Progress
in Materials Science 106: 100574. doi:10.1016/j.pmatsci.2019.100574
Mandke,
M.V. & Pathan, H.M. 2012. Electrochemical growth of copper nanoparticles:
Structural and optical properties. Journal of Electroanalytical Chemistry 686: 19-24. doi:10.1016/j.jelechem.2012.09.004
Mathur,
J. 2013. Effect of electrodeposition parameters on morphology of copper thin
films. IOSR Journal of Engineering 3(8): 55-61.
doi:10.9790/3021-03835561
Mentar,
L. 2011. Early stages of cobalt-copper alloys electrodeposition onto
fluorine-doped tin oxide electrodes in sulfate solution. Oriental Journal of
Chemistry 27(2): 477-483.
Mladenović,
I.O., Bošković, M.V., Vuksanović, M.M., Nikolić, N.D., Lamovec,
J.S., Vasiljević-Radović, D.G. & Radojević, V.J. 2022.
Structural, mechanical and electrical characteristics of copper coatings
obtained by various electrodeposition processes. Electronics 11(3): 443.
doi:10.3390/electronics11030443
More,
V. & Bhargava, P. 2017. Electrodeposited copper current collecting fingers
for DSSCs. Materials Science in Semiconductor Processing 68: 178-185.
doi:10.1016/j.mssp.2017.05.013
Nasirpouri,
F., Alipour, K., Daneshvar, F. & Sanaeian, M.R. 2020. Electrodeposition of
anticorrosion nanocoatings. In Corrosion Protection at the Nanoscale,
edited by Rajendran, S., Nguyen, T.A., Kakooei, S., Yeganeh, M. & Li, Y.
Elsevier. pp. 473-497. doi:10.1016/b978-0-12-819359-4.00024-6
Nikolić,
N.D. & Popov, K.I. 2010. Hydrogen co-deposition effects on the structure of
electrodeposited copper. In Electrodeposition. Modern Aspects of
Electrochemistry, edited by Djokic, S. New York: Springer. 48: 1-70.
doi:10.1007/978-1-4419-5589-0_1
Norziehana,
N., Isa, C., Mohd, Y., Hafizudden, M., Zaki, M., Aminah, S. & Mohamad, S.
2017. Electrodeposition and characterization of copper coating on stainless
steel substrate from alkaline copper solution containing
ethylenediaminetetraacetate (EDTA). Journal of Mechanical Engineering 2(1): 127-138.
Odetola,
P., Popoola, P., Popoola, O. & Delport, D. 2016. Parametric variables in
electro-deposition of composite coatings. Electrodeposition of Composite
Materials. InTech. doi:10.5772/62010
Olson,
T.S., Atanassov, P. & Brevnov, D.A. 2005. Electrodeposition of gold
particles on aluminum substrates containing copper. The Journal of Physical
Chemistry B 109(3): 1243-1250. doi:10.1021/jp045670w
Oo,
T.Z., Devi Chandra, R., Yantara, N., Prabhakar, R.R., Wong, L.H., Mathews, N.
& Mhaisalkar, S.G. 2012. Zinc Tin Oxide (ZTO) electron transporting buffer
layer in inverted organic solar cell. Organic Electronics 13(5):
870-874. doi:10.1016/j.orgel.2012.01.011
Pan,
J., Zhang, Z., Zhan, Z., Xiong, Y., Wang, Y., Cao, K. & Chen, Y. 2020. In
situ generation of silver nanoparticles and nanocomposite films based on
electrodeposition of carboxylated chitosan. Carbohydrate Polymers 242:
116391. doi:10.1016/j.carbpol.2020.116391
Pavlović,
M.G., Pavlović, L.J., Maksimović, V.M., Nikolić, N.D. &
Popov, K.I. 2010. Characterization and morphology of copper powder particles as
a function of different electrolytic regimes. Int. J. Electrochem. Sci. 5: 1862-1878. www.electrochemsci.org.
Qing,
Y., Hu, C., Yang, C., An, K., Tang, F., Tan, J. & Liu, C. 2017. Rough
structure of electrodeposition as a template for an ultrarobust self-cleaning
surface. ACS Applied Materials & Interfaces 9(19): 16571-16580.
doi:10.1021/acsami.6b15745
Qiu,
R., Cha, H.G., Noh, H.B., Shim, Y.B., Zhang, X.L., Qiao, R., Zhang, D., Kim,
Y.I., Pal, U. & Kang, Y.S. 2009. Preparation of dendritic copper
nanostructures and their characterization for electroreduction. The Journal
of Physical Chemistry C 113(36): 15891-15896. doi:10.1021/jp904222b
Rajput,
A., Kundu, A. & Chakraborty, B. 2021. Recent progress on copper‐based
electrode materials for overall water‐splitting. ChemElectroChem 8(10): 1698-1722. doi:10.1002/celc.202100307
Rana,
M.S., Rahman, M.A. & Alam, A.M.S. 2014. A CV study of copper complexation
with guanine using glassy carbon electrode in aqueous medium. ISRN
Electrochemistry 2014: 1-7. doi:10.1155/2014/308382
Rashidi,
A.M. & Amadeh, A. 2008. The effect of current density on the grain size of
electrodeposited nanocrystalline nickel coatings. Surface and Coatings
Technology 202(16): 3772-3776. doi:10.1016/j.surfcoat.2008.01.018
Rasouli,
F., Rouhollahi, A. & Ghahramanifard, F. 2019. Gradient doping of copper in
ZnO nanorod photoanode by electrodeposition for enhanced charge separation in
photoelectrochemical water splitting. Superlattices and Microstructures 125: 177-189. doi:10.1016/j.spmi.2018.08.026
Ren,
N., Wang, W., Li, B., Huang, L. & Zhang, Y. 2021. Preparation and property
optimization of silver-embedded FTO transparent conductive thin films by laser
etching and coating AZO layer. Journal of Materials Science: Materials in
Electronics 32(8): 10644-10661. doi:10.1007/s10854-021-05720-0
Riveros,
G., León, M., Ramírez, D., Hernández, L., Martín, F., Romero, R. &
Dalchiele, E.A. 2020. Study of the nucleation and growth mechanisms of copper
electrodeposition on bare and nitrogen-doped reduced graphene oxide modified
SnO 2 :F/glass substrates. Journal of The Electrochemical Society 167(12): 122508. doi:10.1149/1945-7111/abb281
Sadana,
Y.N., Deshpande, A.K. & Gedye, R.N. 1982. Electrodeposition of alloys XIII:
Electrodeposition of Cu-Ni alloys from solutions containing L-asparagine. Surface
Technology 17(2): 111-123. doi:10.1016/0376-4583(82)90013-9
Schiavi,
P.G., Farina, L., Zanoni, R., Altimari, P., Cojocariu, I., Rubino, A., Navarra,
M.A., Panero, S. & Pagnanelli, F. 2019. Electrochemical synthesis of
nanowire anodes from spent lithium ion batteries. Electrochimica Acta 319: 481-489. doi:10.1016/j.electacta.2019.07.024
Schnebele,
E., Jaiswal, K., Luco, N. & Nassar, N.T. 2019. Natural hazards and mineral
commodity supply: Quantifying risk of earthquake disruption to South American
copper supply. Resources Policy 63: 101430. doi:10.1016/j.resourpol.2019.101430
Sekar,
R. 2017. Synergistic effect of additives on electrodeposition of copper from
cyanide-free electrolytes and its structural and morphological characteristics. Transactions of Nonferrous Metals Society of China 27(7): 1665-1676.
doi:10.1016/S1003-6326(17)60189-4
Shivakumara,
S., Manohar, U., Arthoba Naik, Y. & Venkatesha, T.V. 2007. Influence of
additives on electrodeposition of bright Zn-Ni alloy on mild steel from acid
sulphate bath. Bulletin of Materials Science 30(5): 455-462.
doi:10.1007/s12034-007-0072-z
Smith, J.R., Campbell, S.A. & Walsh, F.C. 1995. Cyclic
voltammetry at metal electrodes. Transactions of the IMF 73(2): 72-78.
doi:10.1080/00202967.1995.11871062
Taheraslani,
M. & Gardeniers, H. 2019. High-resolution SEM and EDX characterization of
deposits formed by CH4+Ar DBD plasma processing in a packed bed reactor. Nanomaterials 9(4): 589. doi:10.3390/nano9040589
Tang,
M.H., Chakthranont, P. & Jaramillo, T.F. 2017. Top-down fabrication of
fluorine-doped tin oxide nanopillar substrates for solar water splitting. RSC
Advances 7(45): 28350-28357. doi:10.1039/C7RA02937C
Tao,
P., Chen, Y., Cai, W. & Meng, Z. 2021. Effect of copper sulfate and
sulfuric acid on blind hole filling of hdi circuit boards by electroplating. Materials 14(1): 1-11. doi:10.3390/MA14010085
Tarditi,
A.M., Bosko, M.L. & Cornaglia, L.M. 2017. 3.1 Electroless plating of Pd
binary and ternary alloys and surface characteristics for application in
hydrogen separation. Comprehensive Materials Finishing 3-3: 1-24.
doi:10.1016/B978-0-12-803581-8.09166-9
Toupin,
J., Strub, H., Kressmann, S., Boudot, M., Artero, V. & Laberty-Robert, C.
2017. Engineering n-p junction for photo-electrochemical hydrogen production. Physical
Chemistry Chemical Physics 19(45): 30675-30682. doi:10.1039/c7cp05122k
Tran,
D.T.T., Nguyen, D.Q., Pham, C.H., Tran, L.D. & Nguyen, D.T. 2020. Facile
synthesis of CuO/ITO film via the chronoamperometric electrodeposition for
nonenzymatic glucose sensing. Communications in Physics 30(2): 161.
doi:10.15625/0868-3166/30/2/14801
Veerakumar,
P., Sangili, A., Manavalan, S., Thanasekaran, P. & Lin, K.C. 2020. Research
progress on porous carbon supported metal/metal oxide nanomaterials for
supercapacitor electrode applications. Industrial & Engineering
Chemistry Research 59(14): 6347-6374. doi:10.1021/acs.iecr.9b06010
Vuong,
D.T., Hoang, H.M., Tran, N.H. & Kim, H.C. 2020. Pulsed electrodeposition
for copper nanowires. Crystals 10(3): 218. doi:10.3390/cryst10030218
Wahyudi,
S., Soepriyanto, S., Mubarok, M.Z. & Sutarno. 2019. Effect of pulse
parameters on the particle size of copper powder electrodeposition. IOP
Conference Series: Materials Science and Engineering 547(1): 012020.
doi:10.1088/1757-899X/547/1/012020
Wang,
K., Ke, X., Wang, W., Tu, C., Luo, D. & Zhang, M. 2020. The impacts of
fluorine-doped tin oxide photonic crystals on a cadmium sulfide-based
photoelectrode for improved solar energy conversion under lower incidence. Catalysts 10(11): 1252. doi:10.3390/catal10111252
Xu,
Y., Zhu, J., Feng, J., Wang, Y., Wu, X., Ma, P., Zhang, X., Wang, G. & Yan,
X. 2021. A rechargeable aqueous zinc/sodium manganese oxides battery with
robust performance enabled by Na2SO4 electrolyte additive. Energy Storage
Materials 38: 299-308. doi:10.1016/j.ensm.2021.03.019
Yun,
Y., Dong, Z., Shanov, V. N., Doepke, A., Heineman, W. R., Halsall, H. B.,
Bhattacharya, A., Wong, D.K.Y. & Schluz, M.J. 2008. Fabrication and
characterization of carbon nanotube array electrodes with gold nanoparticle
tips. Sensors and Actuators B: Chemical 133(1): 208-212.
doi:10.1016/j.snb.2008.02.019
Zhang,
J., Han, J., Shi, Z., Ju, Y., Zhang, Z. & Gu, M. 2019. Fabrication and
enhanced H2O2-sensing properties of the uniform porous FTO glasses with tunable
pore sizes and densities. Applied Surface Science 465: 357-361.
doi:10.1016/j.apsusc.2018.09.191
Zhang,
Z., Jiang, C., Cai, F., Fu, P., Ma, N. & Ji, V. 2015. Two stages for the
evolution of crystallite size and texture of electrodeposited Ni–ZrC composite
coating. Surface and Coatings Technology 261: 122-129.
doi:10.1016/j.surfcoat.2014.11.048
Zhao,
G., Xuan, J., Liu, X., Jia, F., Sun, Y., Sun, M., Yin, G. & Liu, B. 2019.
Low-cost and high-performance ZnO nanoclusters gas sensor based on new-type FTO
electrode for the low-concentration H2S gas detection. Nanomaterials 9(3): 435. doi:10.3390/nano9030435
Zhao,
J., Sun, L., Canepa, S., Sun, H., Yesibolati, M.N., Sherburne, M., Xu, R.,
Sritharan, T., Loo, J.S.C., Ager III, J.W., Barber, J., Mølhave, K. & Xu,
Z.J. 2017. Phosphate tuned copper electrodeposition and promoted formic acid
selectivity for carbon dioxide reduction. Journal of Materials Chemistry A 5(23): 11905-11916. doi:10.1039/C7TA01871A
*Corresponding author; email:
lorna_jm@ukm.edu.my
|